Stereoselective S_N2-Substitutions Using Polyfunctional Lithium Arylcuprates Prepared by an Iodine−**Copper Exchange**

M. Isabel Calaza, Xiaoyin Yang, Darunee Soorukram, and Paul Knochel*

*Department Chemie, Ludwig-Maximilians-Uni*V*ersita¨t, Butenandtstrasse 5-13, 81377, Mu¨nchen, Germany*

paul.knochel@cup.uni-muenchen.de

Received November 24, 2003

ORGANIC LETTERS 2004 Vol. 6, No. 4 ⁵²⁹-**⁵³¹**

ABSTRACT

Polyfunctional mixed lithium arylcuprates of the type (FG-Ar)(PhMe2CCH2)CuLi obtained via iodine− **or bromine**−**copper exchange with** (PhMe₂CCH₂)₂CuLi react with cyclic 2-iodoallylic acetates with high S_N2 selectivity. The addition of ZnBr₂ changes this selectivity and allows the performance of highly regioselective and enantioselective anti S_N2[′] substitutions using open-chain allylic pentafluorobenzoates.

The use of highly functionalized organometallics considerably enhances the synthetic potential of these reagents.¹ Recently, we have reported an efficient preparation of polyfunctional lithium arylcuprates² of the type $(FG-Ar)$ - $(Neophyl)CuLi 1 (Neophyl = PhMe₂CCH₂)$ from functionalized aryl iodides 2 via an iodine-copper exchange reaction³ using the bulky lithium cuprate (Neophyl)₂CuLi 3. The Neophyl moiety present in the mixed cuprates of type **1** plays the role of a nontransferable group.4 Lithium diorganocuprates are powerful nucleophiles and have been extensively used for performing allylic substitutions.⁵ Recently, we have

(3) (a) Corey, E. J.; Posner, G. H. *J. Am. Chem. Soc.* **1968**, *90*, 5615. (b) Kondo, Y.; Matsudaira, T.; Sato, J.; Murata, N.; Sakamoto, T. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 736.

shown that chiral 2-iodoallylic alcohol derivatives of type **4** are highly reactive electrophiles that undergo anti $S_N 2'$ substitution reactions with a range of zinc-copper reagents (RCu(CN)ZnI), providing chiral products with high enantioselectivity.⁶ We have also reported that aryl zinc-copper reagents react with open-chain allylic pentafluorobenzoates providing only the anti S_N2' products allowing an enantioselective synthesis of $(+)$ -ibuprofen.⁷ Herein, we wish to report that in the absence of zinc salts, polyfunctionalized aromatic lithium cuprates of type **¹** obtained via an iodinecopper exchange undergo a highly stereoselective S_N2 substitution with the allylic acetates **4** leading to chiral

^{(1) (}a) Knochel, P.; Millot, N.; Rodriguez, A. L.; Tucker, C. E. *Org.* products of type **5** (Scheme 1 and Table 1). *React.* **2001**, *58*, 417. (b) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. *Angew. Chem., Int. Ed.* **2003**, *42*, 4302.

^{(2) (}a) Piazza, C.; Knochel, P. *Angew. Chem., Int. Ed.* **2002**, *41*, 3263. (b) Yang, X.; Rotter, T.; Piazza, C.; Knochel, P. *Org. Lett*. **2003**, *5*, 1229.

^{(4) (}a) Jones, P.; Reddy, C. K.; Knochel, P. *Tetrahedron* **1998**, *54*, 1471. (b) Bertz, S. H.; Eriksson, M.; Miao, G.; Snyder, J. P. *J. Am. Chem. Soc.* **1996**, *118*, 10906.

^{(5) (}a) Lipshutz, B. H.; Sengupta, S. *Org. React.* **1992**, *41*, 135. (b) Tseng, C. C.; Paisley, S. D.; Goering, H. L. *J. Org. Chem.* **1986**, *51*, 2884. (c) Underiner, T. L.; Goering, H. L. *J. Org. Chem.* **1988**, *53*, 1140. (d) Krause, N.; Gerold, A. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 186. (e) Krause N.; Hoffmann-Roder, A.; Canisius, J. *Synthesis* **2002**, 1759. (f) Hoffmann-Roder, A.; Krause N. *Angew. Chem., Int. Ed.* **2002**, *41*, 2933.

⁽⁶⁾ Calaza, M. I.; Hupe, E.; Knochel, P. *Org. Lett*. **2003**, *5*, 1059. (7) Corey, E. J.; Helal, C. J. *Angew. Chem., Int. Ed.* **1998**, *37*, 1986. (b) Wallbaum, S.; Martens, J. *Tetrahedron: Asymmetry* **1992**, *3*, 1475.

The new polyfunctional arylcopper reagents **1** were prepared by the reaction of aryl iodides 2 with (PhMe₂CCH₂)₂-CuLi (1.1 equiv) at -78 °C. The reaction mixture was warmed to 0 °C, which leads to a complete exchange reaction within 0.5 h. In the case of the *p*-cyanophenylcopper reagent **1c**, the precursor was the corresponding bromide (4-bromobenzonitrile). The Br/Cu exchange reaction was performed at room temperature for 0.5 h. The acetates **4a**,**b** were added at -40 °C, and the reaction mixture was stirred at -20 °C for 12 h leading to the products $5a-j$ in $50-89\%$ yields and excellent enantioselectivities (89-98% ee); see Table 1. (R) -2-Iodo-2-cyclopentenyl acetate **4a** (96% ee)⁷ reacts with arylcuprates bearing both electron-withdrawing and donating groups (entries 1 and 2 of Table 1) leading to the cyclopentenyl iodides $\overline{5a}$, **b** in $50-71\%$ yields and $92-96\%$ ee. (R) -2-Iodo-2-cyclohexenyl acetate **4b** undergoes the S_N2 substitution with better yields $(66-89\%)$; entries $3-9$) and an excellent transfer of the stereochemical information. A broad range of functional groups can be present in the arylcuprate (CO₂Et, CN, CF₃, MeO, COCH₃). Remarkably, reactive halogenides such as an iodide (entry 6) or a bromide (entry 7) are compatible with the substitution reaction. The resulting chiral dihalogenated products **5f**-**^g** (94-96% ee) are versatile building blocks in which the two halogencarbon bonds can be differentiated in future transformations. Interestingly, the presence of a keto group in the copper reagent **1g** is possible (entry 9). The desired product **5i** is obtained in 67% yield and 89% ee, showing ca. 5% racemization (enantiomer ratio from 99:1 to 95:5). This is may be due to a competitive enolization of the keto group by (Neophyl) 2 CuLi leading to a new copper bearing an enolate ligand and displaying another chemoselectivity.

The S_N2 nature of the substitution was established by preparing (*S*)-3-phenylcyclohexene by our method ((i) substitution of (R) -4b with Ph(Neophyl)CuLi, (ii) n -BuLi, -78 °C, then H₂O) and measuring its $[\alpha_{D}]$ (-147.2° (*c* 0.795, benzene, 25 °C). The literature⁸ indicates that for (R)-3phenylcyclohexene, $[\alpha_{D}] = +149.7^{\circ}$, benzene, 29 °C. Furthermore, we have prepared 1-*d*-2-iodo-2-cyclohexenyl acetate **4c**⁹ and treated it with the mixed lithium cuprate **1b**

^a Isolated yield of analytically pure product. *^b* Enantiomeric excess was determined by HPLC-analysis and chiral-GC. In each case, the racemic product was prepared for calibration.

under our standard conditions. We have observed only the formation of the product **5k** having the deuterium atom at the allylic position 6 (Scheme 2), clearly indicating the occurrence of an S_N2 substitution.

We have also examined substitution reactions using 2-methyl-2-cyclohexenyl acetate instead of the iodo-substi-

⁽⁸⁾ Berti, G.; Macchia, B.; Macchia, F.; Monti, L. *J. Org. Chem.* **1968**, *33*, 4045.

tuted allylic acetate **4b**. We have observed in this case sluggish reactions with loss of stereochemical information. The use of 2-iodo-substituted allylic acetates is therefore essential. Furthermore, we have shown that the iodine in position 2 can be replaced by various groups using crosscoupling reactions (Scheme 3).

Thus, the treatment of cyclohexenyl iodide **5c** (95% ee) with 1-hexyne in the presence of a catalytic amount of $PdCl₂$ -(PPh₃)₂ (5 mol %), CuI (5 mol %), and Et₃N (25 °C, 25 h) provides the expected enyne **6a** in 70% yield.10 Similarly, the reaction of **5c** with 4-carbophenoxyphenylzinc iodide prepared from phenyl 4-iodobenzoate via an iodinemagnesium exchange reaction¹¹ furnishes, in the presence of Pd(dba)₂ (3.5 mol %) and dppf (3.5 mol %) (THF, 25 °C, 16 h), the expected Negishi cross-coupling12 product **6b** in 75% yield. Finally, the performance of the cross-coupling reaction with BuZnI prepared by the desired insertion of zinc dust in butyl iodide leads,^{1a} under the same conditions, to the expected product **6c** in 69% yield (Scheme 3). These cross-coupling reactions indicate that the carbon-iodine bond can be readily transformed to $Csp^2 - Csp^3$, $Csp^2 - Csp^2$, and $Csp^2 - Csp$ honds Csp^2 - Csp bonds.
Finally, we ave

Finally, we examined the nucleophilic substitution of the functionalized arylcuprates of type **1** with chiral open-chain allylic pentafluorobenzoates 13 in the presence of zinc salts. We have indicated above the importance of the presence of zinc salts, which strongly favor the occurrence of $S_N 2'$ substitutions. We have found that in the absence of zinc salts, the mixed arylcuprate of type **1** reacts nonregioselectively. However, the addition of zinc bromide (1.0 equiv) allows the performance of a highly stereoselective anti $S_N 2'$ substitution as has been observed with zinc-copper reagents prepared from organozinc reagents. Thus, reaction of the lithium cuprate 1b with a THF solution of ZnBr₂ followed by addition of the chiral *cis*-allylic pentafluorobenzoate **7** (97% ee)¹⁴ furnishes, in THF/ether (3:1), only the S_N2' product **8** (85%; 95% ee); Scheme 4.

In summary, we have demonstrated¹⁴ that the new polyfunctional mixed lithium arylcuprates of type **1** react with high stereoselectivity and excellent yields with chiral 2-iodocycloalkenyl acetates of type 4 , affording the S_N2 substitution products. The addition of zinc bromide dramatically changes this behavior and, with an open-chain allylic pentafluorobenzoate, provides only the anti S_N2' -substitution product. We are currently exploring the generality of these allylic reactions as well as their application in natural product synthesis.

Acknowledgment. We thank the Fonds der Chemischen Industrie for financial support. M.I.C. thanks the European Community (Marie Curie Fellowship of the program "Improving Human Research Potential and the Socio-economic Knowledge Base" Contract HPM-FCT-2000-01024) for a fellowship. We thank Boehringer-Ingelheim (Vienna) and Chemetall GmbH (Frankfurt) for the generous financial support and gifts of chemicals.

Supporting Information Available: Experimental procedures and analytical data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0362865

^{(9) 1-}*d*-2-Iodo-2-cyclohexenyl acetate **4c** was prepared in two steps from 2-iodo-2-cyclohexen-1-one: reduction with $NabD_4$ and $CeCl_3·7H_2O$ in methanol (25 °C, 3 h; 76%) followed by an acylation with Ac₂O in pyridine (83%).

^{(10) (}a) Qing, F.-L.; Gao, W.-Z. *Tetrahedron Lett.* **2000**, *41*, 7727. (b) Marshall, J. A.; Pinney, K. G. *J. Org. Chem*. **1993**, *58*, 7180.

^{(11) (}a) Klement, I.; Rottländer, M.; Tucker, C. E.; Majid, T. N.; Knochel, P.; Venegas, P.; Cahiez, G. *Tetrahedron* **1996**, *52*, 7201. (b) Staubitz, A.; Dohle, W.; Knochel, P. *Synthesis* **2003**, 233.

^{(12) (}a) Negishi, E. *Acc. Chem. Res.* **1982**, *15*, 340. (b) Negishi, E.; Matsushita, M.; Kobayashi, M.; Rand, C. L. *Tetrahedron Lett.* **1983**, *24*, 3822. (c) Negishi, E.; Owczarczyk, Z. *Tetrahedron Lett.* **1991**, *32*, 6683. (13) Harrington-Frost, N.; Leuser, H.; Calaza, M. I.; Knochel, P. *Org. Lett.* **2003**, *5*, 2111.

⁽¹⁴⁾ **Typical Procedure: Preparation of 5c.** A dry and argon-flushed 25 mL flask, equipped with a magnetic stirrer and a septum, was charged with a solution of Nphyl₂CuLi (1.1 mmol, 1.1 equiv). Ethyl 4-iodobenzoate (276 mg, 1.0 mmol) was added at -78 °C, and the resulting mixture was kept stirring at 0 °C for 30 min. Then, the reaction was cooled to -40 °C, and (*R*)-2-iodo-cyclohex-2-enyl acetate (266 mg, 1.0 mmol) was added. The resulting mixture was allowed to warm to -20 °C and stirred overnight. The reaction was quenched with saturated aqueous NH4Cl solution, and the mixture was poured into water (25 mL). The aqueous phase was extracted with diethyl ether (3×30 mL). The organic fractions were washed with brine, dried over MgSO4, and concentrated in vacuo. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 10:1) yielded 274 mg (77% yield) of **5c** as a colorless oil.